skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Zikun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solitary fibrous tumor (SFT) is a rare soft-tissue sarcoma. This nonhereditary cancer is the result of an environmental intrachromosomal gene fusion between NAB2 and STAT6 on chromosome 12, which fuses the activation domain of STAT6 with the repression domain of NAB2. Currently there is not an approved chemotherapy regimen for SFTs. The best response on available pharmaceuticals is a partial response or stable disease for several months. The purpose of this study is to investigate the potential of RNA-based therapies for the treatment of SFTs. Specifically, in vitro SFT cell models were engineered to harbor the characteristic NAB2–STAT6 fusion using the CRISPR/SpCas9 system. Cell migration as well as multiple cancer-related signaling pathways were increased in the engineered cells as compared to the fusion-absent parent cells. The SFT cell models were then used for evaluating the targeting efficacies of NAB2–STAT6 fusion-specific antisense oligonucleotides (ASOs) and CRISPR/CasRx systems. Our results showed that fusion specific ASO treatments caused a 58% reduction in expression of fusion transcripts and a 22% reduction in cell proliferation after 72 h in vitro. Similarly, the AAV2-mediated CRISPR/CasRx system led to a 59% reduction in fusion transcript expressions in vitro, and a 55% reduction in xenograft growth after 29 days ex vivo. 
    more » « less
  2. Abstract A Physical Unclonable Function (PUF) is a security primitive that exploits inherent variations in manufacturing protocols to generate unique, random‐like identifiers. These identifiers are used for authentication and encryption purposes in hardware security applications in the semiconductor industry. Inspired by the success of silicon PUFs, herein it is leverage Terminal deoxynucleotidyl Transferase (TdT), a template‐independent polymerase belonging to the X‐family of DNA polymerases, to augment the intrinsic entropy generated during DNA lesion repair and rapidly produce genetic PUFs that satisfy the following properties: robustness (i.e., they repeatedly produce the same output), uniqueness (i.e., they do not coincide with any other identically produced PUF), and unclonability (i.e., they are virtually impossible to replicate). Furthermore, a post‐sequencing feature selection methodology based on logistic regression to facilitate PUF classification is developed. This experimental and computational pipeline drastically reduces production time and cost compared to conventional genetic barcoding without compromising the stringent PUF criteria of uniqueness and unclonability. This results provide novel insights into the function of TdT and represent a major step toward utilization of PUFs as a biosecurity primitive for cell line authentication and provenance attestation. 
    more » « less